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Synopsis 

Presented herein are the studies of laminar-turbulent transition in micropolar and power 
law fluids flowing in a circular pipe. For some parametric values of micoropolar and power 
law fluids, both depict the drag reducing properties. The parametric values of these repre- 
sentations have been obtained from the experimental results of McGomb. It has been observed 
that, in both the cases, as the drag-reducing property in the solution increases, the first 
transition point moves towards the walls of the pipe. It is also observed that the onset of early 
turbulence phenomenon occurs for the drag-reducing polymeric solutions. 

INTRODUCTION 
From the basic concept of the laminar-turbulence transition, it is pic- 

tured that the process of transition occurs in a few steps; the formation of 
2dimensional waves, 3dimensional waves turbulent spot, and its propo- 
gation to the entire field of flow. In a pipe line design, for which one needs 
a means of ascertaining whether the flow will be laminar or turbulent, the 
Reynolds number is the criterion for the Newtonian fluids, but distinct 
regions of laminar- turbulent transition are also observed for other kind 
of fluids. Shirt0 et a1.l investigated the process of laminar-turbulent tran- 
sition of fluid flow in a circular pipe in detail and measured the velocity 
of fluctuations and compared the experimental values of critical position 
with the theoretical one. The problem of laminar-turbulent transition in 
drag-reducing polymeric solutions becomes more important as White and 
McElogot2 have reported that the drag reducing polymeric solutions delay 
the turbulence, but Hansen and Little3 are in favor of the early turbulence. 
A detailed experimental work of Jones et a1.4 is also in favor of the early 
turbulence. 

In recent past much attention has been paid to study the laminar-tur- 
bulent transition in certain non-Newtonian fluids. In almost all the work 
appearing to date in reference to the polymer suspensions, the classical 
Navier-Stokes equations have been introduced. The inadequacy of the clas- 
sical continuum approach to describe the mechanics of complex fluids such 
as liquid crystals and polymeric suspensions, etc., has led to the development 
of microcontinua; one such theory on microcontinua is that of micropolar 
 fluid^.^ 

In this paper we have presented a study of laminar-turbulent transition 
phenomenon for drag-reducing polymeric solutions by considering power 
law fluid (in the first part) and micropolar fluid (in the second part) rep- 
resentation for the drag-reducing polymeric solution, in a circular pipe for 
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some parametric values of power law fluid and micropolar fluid. The par- 
ametric values of power laws representation have been reported by Tandon 
and Kulshreshtha6 using the experimental results of McComb.’ The results 
of this paper may be valuable in explaining the drag-reducing phenomenon 
which still needs a satisfactory rigor. 

ANALYSIS 

For Power Law Fluid Representation 

From the Navier-Stokes equation for incompressible power law fluid, we 
obtain the equation of kinetic energy 

where 

n-112 

T =  m(iA:A) A (2) 

Here A is the rate of deformation tensor, is the velocity vector, 7 is 
the external force, j5 is the density, P is the pressure, t is the time, T is the 
stress tensor, and ge is the gravitational conversion factor. Throughout the 
analysis the external force F has been neglected. 

The motion of the fluid is analyzed into the mean motion and superposed 
turbulent fluctuations. The velocity components and pressure of the total 
motion can be expressed in the component form as 

(3) ui = iii + ui, i = r, 8, or z, p = 5 + p’ 
For the steady motion in circular pipes we introduce the velocity compo- 
nents as 

u, = u:, u* = u;, uz = iiz + u: (4) 

As the disturbance is introduced at only one position, the corresponding 
differential terms of the velocity fluctuations with respect to the position 
are neglected and, further, as the fluctuations are very small. The square 
of the velocity fluctuations are also neglected. Thus, the kinetic energy 
equations may be written for axisymetric flow of power law fluid in a 
circular pipe as 

az 
+ u:-(p +p’) + Ti,- 

a -  
az 
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where 

and 

The terms on the left-hand side of eq. (5) represent the rate of increase in 
the surplus kinetic energy per unit volume by the velocity fluctuations, + 
represents the rate of additional energy supplied from the base flow, and + represents the rate of dissipation of the velocity fluctuation energy. If + 2 +, the disturbances may be damped out, and the flow remains laminar; 
if + < +, the disturbances will grow up, and the laminar flow will be unstable. 
Now we define the stability index 

For the power law fluid, introducing. 

3n+ 1 

we get 
r 

3n+ 1 

where p = r /R and (uJ is the average velocity. The first disturbance in 
the motion of the fluid grows at the point where the stability index is 
maximum. The stability index is maximum at 

dIJdp= 0 (11) 

i.e., at 
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For Micropolar Fluid Representation 

The equation of kinetic energy for the micropolar fluid is 

where A,, p,, and k, are parameters for the micropolar fluid and w is the 
gyration vector. 

Following the same process and introducing the same assumptions as 
taken in the previous subsection in addition the components of the gyration 
are written as 

W, = W:, W, = me + W ;  and W, = W: (14) 

Finally, we obtain a kinetic energy equation similar to eq. (5), where 

when A <3.75 
For the micropolar fluid introducing 

where 

and 

We get the stability index 
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The stability indez will be maximum at 

1 
p2 = 4 [(3N1 + 1) [(3N1+l)'-8(N1 + 1)]'/2) 

where 

2(8+A2 - 4N) 
N A 2  

.N1 = 
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(21) 

(22) 

CALCULATION OF THE CRITICAL VELOCITY 
The maximum value of the stability index remains constant for all the 

fluids.s Therefore, the critical velocity at which the first transition point 
appears, for the power law fluid is 

and for the micropolar fluid is 

where 

X = 1 + (NA2(1-2p2)/2 ( 8 + A 2  - 4N)j (25) 

and (yJ is the critical velocity where the first disturbance grows in the 
water. 

RESULTS AND DISCUSSION 

Geometric Position of the First Critical Point 

The formulation of the turbulent spot is a local phenomenon, and it has 
been observed that its formation concides with the point at which the sta- 
bility index is maximum. Though the development of instability depends 
upon the local conditions but the critical radius does not remains uneffected 
by velocity profiles and rheological properties of the .luid. 

Figure 1 depicts the variation of the geometric position of the first tran- 
sition point with N (a nondimensional parameter of micropolar fluid). We 
observe that, as the value of N increases, the first transition point moves 
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Variation of critical point (r/R=p) with Nfor different values of A. 

towards the walls of the pipe and this fact is similar to that observed for 
the power law fluid for decreasing value of n (a parameter of power law 
fluid), shown in Figure 2 for pseudoplastic fluids. Therefore, we can say 
that as the value of N increases in the micropolar fluid, the drag-reducing 
property of the fluid increases. Also as the parameter A increases, the rate 
of shifting of the first transition point towards the walls increases. This 
fact also shows that the increasing values of parameter A are favorable for 
drag-reduction phenomenon similar to the pseudoplasticity of the polymer 
suspension as obtained by us6 for the power law fluid from the data obtained 
for the experimental results of McComb.' 

Early Transition 

Figure 3 describes the variation of critical velocity at which the transition 
occurs, with the pseudoplasticity of the power law fluid taking p1 = p2, 
p = 0.01, and m = 0.012. We concluded that, as the pseudoplasticity of 
the fluid increases, the first disturbance appears earlier. Similar results 
have been reported by Hansen and Little3 and Jones et al.4 Mishra and 
Tripathis have observed that the pseudoplasticity delays the laminar- tur- 
bulent transition which might be the effect of higher viscosity due to the 
addition of greater amount of polymer to the solvent. 
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Fig. 2. Variation of critical point (dR) with flow behavior index (n), in a circular Pipe. 

Fig. 3. 
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Variation of critical velocity with pseudoplastisity where (u,) = 10 cm/sec. 
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Fig. 4. Variation of the critical velocity (u,) with N for different values of N where 
K = 5 x 10-3(uz) = 10 and h = 1. 

Figure 4 describes the variation of critical velocity at which the first 
transition occurs, with the parameter N of the micropolar fluid taking 
p1 = pz and K, = 5 x lop3, p = 1 x From this figure, we observe 
that as the parameter N increases the critical velocity decreases i.e. the 
transition occurs earlier. This result is quantitatively similar to that of 
Harro Kuemmeverg between two parallel walls. 

From these results, we conclude that the onset of early turbulence phe- 
nomenon occurs in dilute solutions of the drag-reducing agents. 
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